1-800-826-3045Tech SupportFind a DealerCallSupportDealer
ARP Logo
The World Leader
in High Performance
Automotive Fasteners
New Kits
Tech
Manufacturing
News
Contact

Fastener Metallurgy - Materials & Alloys

Fastener Metallurgy - Materials & Alloys: metal carbides, chromium, specific alloys (A286, ARP2000, L-19, etc.)

  1. Home
  2. Tech
  3. Metallurgy
  4. Materials Alloys

Metallurgy for the Non-engineer

BY RUSSELL SHERMAN, PE

Materials & Alloys

6. What are metal carbides and what is their significance?

The strength of all alloy and carbon steels is derived from the metal carbides formed during the mill processing. The carbon in steels combines with iron, vanadium and with chromium, as well as many other metal alloy additions to form compounds, which are a very hard phase within the iron matrix. Tool steels generally have high carbon content (above .8%) and can be made very hard – but brittle.

7. What exactly is chromium?

Chromium is a metal and is typically used for plating because it is shiny. It is also used as an alloy addition to iron to form a stainless steel. A stainless steel must contain at least 12% chromium, but these lean chromium steels can still show some rust on the surface. Using 18% chromium will make a more rust resisting stainless. Exposing any stainless to oxygen at temperatures above 1200°F will cause the chromium to join the oxygen and therefore leave the surface depleted in chromium if it falls below 12% the surface will show rust.

16. What exactly is A286? And to what is it compared?

A286 is a 25% nickel and 18% chromium alloy with smaller amounts of titanium and aluminum, which precipitate during aging – after solution treatment. It is a true stainless steel due to the high chromium and it is austenitic due to the high nickel. A286 was developed as a high temperature alloy for use in pre-jet aircraft engines. The strength level was only 140,000 psi, but it had good high temperature strength and exceptional toughness, making it an excellent fastener alloy.

Rocketdyne became interested in it for rocket engines being developed in the early 60's. But they required higher strength. We were part of the team that developed a thermo-mechanical method to produce a strength level of 200,000 psi. This involved severe cold reduction after solution treatment and before aging. An aerospace material spec (AMS) was then written requiring this treatment for 200,000 psi strength level. There is no other steel alloy, at this level, which can match A286 for corrosion resistance, toughness or bolt fatigue strength.

18. What is the difference between 4130 and 8740 chrome moly?

Both are alloy steels with similar chemistry. The 4130 has only .3% carbon and can't be hardened as high as 8740, which has .4% carbon. Also, 8740 has about .45% nickel and 4130 has none. Both have moly (most alloy steels have moly). The chromium content of 4130 is slightly higher, .95% instead of .55%. However, 8740 is generally considered to have slightly better toughness due to the nickel.

19. What exactly is ARP2000 and how does it compare to 8740 and 4340?

ARP2000 is a heavily alloyed martensitic quench and temper steel, initially developed for use in steam power plants. As such it has excellent stability at high temperatures. But most important, ARP research discovered that in addition to temperature stability it has excellent notch toughness in the higher strength ranges and is alloyed to be tempered to Rc44/47. 8740 and 4340 can be tempered to the same hardness. But, the tempering temperature would yield material in the "temper brittle zone" (between 500° and 700°F), producing significant notch sensitivity. ARP2000 is tempered above that temperature range and has a strength between 200,000 and 220,000 psi.

20. How does L19 compare to ARP2000?

L19 differs from ARP2000 in that it is a vacuum melted alloyed steel with sufficient chromium and carbon to achieve high hardness (but below the level of a stainless steel). L19 is air-cooled from the hardening temperature in a way that does not require an oil quench to achieve full hardness and is tempered to assure full conversion to martensite between 1025°F and 1075°F. L19 is a proprietary material capable of achieving strengths of 220,000/230,000 or 260,000/270,000 psi as may be required. Both L19 and ARP2000 steels are modified bcc (martensite) at room temperature. L19 has the same advantage as ARP2000 in that a high strength is obtained at a high tempering temperature. This alloy is easily contaminated and requires special handling.

21. What is AMS5844? And how does it compare to AMS5842E?

Both of these alloys are considered multiphase, non-steel, austenitic materials. Both derive their strength (260,000 psi) from severe cold work (48/50%) which raises the hardness from Rockwell C 46 up to 49/50. The AMS5842 (for MP159) was developed much later than AMS5844 (for MP35) in order to increase the usable service temperature by about 100° so it could be used in hotter sections of jet engines.

Quick Links

Find KitsView CatalogFind a DealerContact Us

Need Help?

Our technical support team
is here to assist you
from 7:30a-4:00p Pacific Time.

Call 1-800-826-3045

Or submit your question through our contact form.

ARP

High-strength fastener solutions for racing, automotive, and marine applications.

1863 Eastman Avenue

Ventura, CA 93003

Quick Links

Search KitsNew KitsImage GalleryFind a DealerLegal & Privacy Policies

Support

About ARPContact Us

Contact

Order Desk & Technical Support

1-800-826-3045

Email

[email protected]

© 2026 Automotive Racing Products (ARP). All rights reserved.